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A more rigorous proof is given of the validity of a generalized Prandtl-Glauert 
technique for caculating the solution to time-dependent small perturbation flows. 
The method, fist used by Miles (19504  for the airfoil problem and later applied 
by Amiet & Sears (1970) to more general problems, allows calculation of the 
term of first order in frequency. Anomalous behaviour for the two-dimensional 
problem is examined in detail and found to be limited to those two-dimensional 
cases which include shed vorticity downstream of the body. This anomaly, which 
precludes using the method for these cases, results from the need to satisfy a 
velocity boundary condition on the body. For this purpose the velocity must be 
calculated from the basic variable, the pressure, through an integrated form of the 
momentum equation. It is in thus calculating the velocity that the anomaly 
occurs. The method can be applied to both the two-dimensional case without 
shed vorticity and the general three-dimensional case. 

1. Introduction 
For small perturbation subsonic flow past a body with a time-dependent 

boundary condition, such as an oscillating airfoil, it  is possible to extend the 
familiar Prandtl-Glauert rule to include, in addition to the quasi-steady term, 
the term of first order in the frequency of oscillation. To be more precise, this 
term is O(E),  where e = M(wb/U)/( 1 - ill2) E Mk*, w being the circular frequency, 
b a typical body dimension, U the mean flow velocity, M the Mach number, and 
k* the reduced frequency k divided by 1-M2.  This technique involves an 
application of Galilean and Loreiitz transformations to reduce the convective 
wave equation (the wave equation for a fluid with a mean flow) to the standard 
wave equation for zero mean flow. The boundary conditions must also be trans- 
formed, but the particular combination of transformations used leaves the body 
at rest (in contrast to a Galilean transform alone, which cannot bring both the 
body and the fluid to rest). By then ignoring the second-order time derivative in 
the wave equation, the problem can be reduced to Laplace’s equation while 
ignoring only terms O(e2) and higher; i.e. the O(s) term is retained. This solution 
technique is discussed in the paper by Amiet & Sears (1970) and also by Miles 
(1950a). It has been referred to as the GASP method (Sears 1971). 

A curious anomaly occurs in this solution procedure, however, for the case of a 
two-dimensional (infinite-span) airfoil with shed vorticity downstream. For this 
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particular case, ignoring the second-order time derivative results in a solution 
which has only the quasi-steady term correct, the term O(E) being given in- 
correctly. This effect was fist noted by Miles (1950b), who derived a solution 
correct to O(k*)  directly from the Possio integral equation. A modification by 
Amiet (1974, 1975a) of thik two-dimensional solution reduces the error from 
O(k*2) to O(e2) and gives accurate results over a wide range of Mach number 
and reduced frequency when compared with numerical solutions, as is further 
verified by Kemp & Homicz (1976). 

The reason given by Miles (19504  for the anomaly is that the integration over 
the infinite span does not commute with the assumed expansion in powers of the 
frequency. While undoubtedly correct, this statement is difficult to interpret in a, 
physical sense, and has left some readers with uncertainty as to the validity of 
the general technique. The intent of the present paper is to clarify the reason for 
the anomalous behaviour, and to verify, more rigorously than has been done 
before, that ignoring the second-order time derivative leads to correct O(E) 
results for the general three-dimensional case and for the two-dimensional case 
without shed vorticity; e.g. a pulsating non-lifting airfoil for which there is no 
velocity discontinuity downstream. 

Before proceeding to the detailed mathematical derivations, it is worth while 
to give a physical justification for the anomaly. The derivation of the Prandtl- 
Glauert extension is dependent on the assumption that the acoustic wavelength 
is much greater than a typical body dimension ( E  < 1). However, the shed 
vorticity, which influences the airfoil loading, itself has a length scale, namely 
its wavelength. Whereas the ratio of the body dimension to the acoustic wave- 
length goes to zero as the frequency goes to zero (the mean velocity remaining 
fixed), the ratio of the shed-vorticity wavelength to the acoustic wavelength 
remains fixed. Also, in the limit of small frequency, for the two-dimensional case 
it can be shown that the shed vorticity lying downstream of any fixed point 
influences the airfoil solution to first order in frequency. On the other hand, for the 
three-dimensional case the effect of the shed vorticity dies off more rapidly with 
distance from the airfoil, so that the far wake is of less importance than for the 
two-dimensional case. 

There is a significant body of literature on singular perturbation theory 
(Van Dyke 1964) that points out the difficulties often encountered in neglecting 
one of the highest-order derivatives in an equation. For the present problem the 
neglect of the second-order time derivative transforms the wave equation (which 
is hyperbolic) into Laplace’s equation (which is elliptic). This elliptic equation 
cannot be used to calculate the far-field solution (Amiet & Sears 1970). However, 
the far-field solution enters implicitly in the calculation of the near-field solution 
when the velocity is calculated from the pressure field in order to satisfy the 
boundary condition on velocity; i.e. see equation (4) herein. 

Approximate solutions, such as those found by the methods described here, 
can be quite useful, especially for aero-acoustics problems. Although alternative 
numerical techniques for the solution of these problems usually exist, the 
improved accuracy obtained with such numerical solutions is not essential for 
noise calculations, and it is usually achieved at  the expense of greater computing 
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time. A case illustrating the need for reasonably simple solutions is that of noise 
generation by an airfoil interacting with a turbulent flow (see, for example, 
Amiet 19753). Since the noise generated is broad band, many repetitions of the 
airfoil response calculation are needed in order to obtain a reasonable plot of the 
noise spectrum. 

Although the methods discussed herein are limited to small E ,  closed-form 
approximate solutions can often be derived for the large E case also (e.g. Amiet 
1976a). Finally, it should be emphasized that the methods described herein are 
not limited to airfoil problems, but can be applied to unsteady compressible 
potential flow problems in general. 

2. Two-dimensional case with shed vorticity 
To clarify the reason for the anomaly encountered in the two-dimensional case, 

the exact solutions for the pressure and velocity produced by a dipole normal to 
the flow will be compared with the approximate solutions found by neglecting 
the second-order time derivative. The equation for the pressure field produced 
by an unsteady line force 

F = jFb'(x) &(y)  eiot 

situated at the origin and normal to the mean flow (j is a unit vector in t,he y 
direction) is the convective wave equation 

where P is the perturbation pressure and DIDt = a/at + U a/ax is the substantial 
derivative. The solution of (2) is the pressure field of a two-dimensional dipole 

iWYP 

4t%l 
p=-- Hi2)(e(T) exp [i(wt + c M ? ~ ] ,  (3) 

where ~2 = x2 +,8zy2, p2 = 1 - M 2  and co and HE) are respectively the sound 
speed and Hankel function of order n. An overbar indicates a variable non- 
dimensionalized by the body scale b.  

The pressure field for an airfoil problem can be represented by a distribution 
of these dipoles over the airfoil surface. The velocity potential, because of the 
discontinuity across the wake, cannot be represented by a distribution of singular 
solutions such as these over the body surface alone, in contrast to the case when 
there is no shed vorticity downstream. (See also $4.) 

Because it is necessary to satisfy a velocity boundary condition on the airfoil 
surface, the velocity perturbation produced by the dipole pressure field must be 
calculated. This can be done by taking the y derivative of the velocity potential 
given by the following integrated form of the momentum equation: 

This relation is commonly used in lifting-surface theory (e.g. Kussner 1940). 
Because the integral is taken from - 00 to x ,  i t  is not too surprising that difficulties 
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can be encountered when terms O(e2) are neglected in calculating the pressure, 
since the solution resulting from this assumption is incorrect at large distances. 
Introducing the pressure field given by (3), the velocity perturbation v normal to 
the mean flow on the x axis is found to be (see, for example, Fung 1969, p. 427) 

where 

It will be noted that, as well as representing the velocity on the x axis produced 
by a line force, the function v, with Il  given by (6), is also the kernel of the Possio 
integral equation. 

The exact dipole solution will be compared with the approximate solution 
found by transforming (2) to an X, Y ,  T co-ordinate system and neglecting the 
PTT term, which is 0(e2 ) ,  in the resulting equation. The combination of Lorentz 
and Galilean transforms 

x - + / ~ X ,  y + Y ,  t -+ (T-MX/co) / /3  (7) 

used by Amiet & Sears (1970) and previously by other authors (e.g. Kussner 
1940; Miles 1959) converts (2) into the standard wave equation. Neglecting the 
PTT term, solving the resulting Laplace equation, and transforming back to the 
x, y, t co-ordinates gives 

for the approximate (denoted by the tilde on P) solution for a line force. If the 
exact solution for the pressure, equation (3),  is expanded for small E, it  is found 
to differ from (8) only in terms of O(e2) and higher, as might be expected since the 
term neglected in the wave equation in deriving (8) was O(e2). The velocity v" 
under this approximation is found by introducing (8) into (4). The result is given 
by (5) with I ,  replaced by 

(9) 
where y = 0.577.. . is Euler's constant. 

To determine the order of accuracy of the approximate velocity v", f ,  wiIl be 
compared with an expansion of I, for small E .  Expanding the Hankel functions in 
(6) for small E and ignoring terms 0 ( e 2 )  in the equation gives 

I, = f; + ( ik* /2n) f (M)  + 0 ( E 2 ) ,  

where f ( M )  = (1- /3) lnM+/3ln(l+/3)-  l n 2  (11) 

is the function of Mach number introduced by Miles (1950b). Thus, even though 
the O(E) terms in the pressure expressions P and P are identical, the O(s) terms 
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in the velocities v and v" differ. The conclusion is that ignoring the PTT term in 
the transformed wave equation will give incorrect O(s)  results for the two- 
dimensional problem with shed vorticity, since a boundary condition on the 
velocity must be satisfied. 

Two interesting additional points will be mentioned before passing to the 
three-dimensional case. It will be noted that the expansion leading to (10) made 
no assumption that the Mach number be real. The solution of the Possio integral 
equation for imaginary values of the Mach number is a relevant case discussed 
by Graham (1970).  Since (10) [and also (12)] holds for imaginary M ,  the approxi- 
mate solution to the Possio integral equation given by Amiet (1974) can be shown 
to retain its validity for imaginary M .  This fact is applied by Amiet (19763) 
to obtain an approximate solution for the problem of an infinite-span airfoil 
encountering a skewed gust in incompressible flow. 

Also, (10) can be rewritten, incurring an error O(s2) ,  as 

I ,  = f; exp [ - i k * Z f ( M ) ]  + O(s2) .  (12) 
Since (5) is the kernel function for the Possio integral equation, writing the 
approximation for Il  in the form (12) allows a simple inversion to obtain an 
approximate solution; i.e. by redefining the unknown in the integrand of the 
Possio integral equation to include the factor exp [ - i k*Z( f (M)  - M2)] and 
noting that fl exp ( - ik*Z) is the kernel function for incompressible flow (but 
with the reduced frequency k replaced hy k*),  the approximate solution given 
by Amiet (1974) can be derived by direct analogy with the incompressible solu- 
tion. A somewhat different method of deriving this approximate solution, 
beginning with an equation similar to (10) rather than (12), but still using the 
analogy with the incompressible solution, was given by Kemp & Homicz (1976). 

3. Three-dimensional case with shed vorticity 
If the line force of the preceding case is replaced by a point force 

F = jF  6(x) 6(y) 6(x) eiWt (13) 

the results corresponding to those for the two-dimensional case are 

P 
P = 

- F  
4n 

P = -exp[i(wt+sM~)]- 

The velocity on the axis ahead of the dipole (x < 0) is 

v(x < O , O , O )  = - '2F'2 exp [i(wt - iiz)], 
8np, Ub2 

where 
at 
t 

(16b) 

exp [iZ(k* +€)El-, (16a) 
1 

I ,  = 5[1 +iZ(k* - s)]exp [iZ(k* +s)] - 

r, = 3 (1 + ik*Z) exp (ik*Z) - 
X 

1 
X 
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Using the relation 

in the integrals in (16) and expanding for small 8 gives 

I2  = &+ O ( S 2 ) .  (18) 

Thus the exact and the approximate solutions for both the pressure and the 
velocity differ by terms O(e2), showing that ignoring the O(@)  term PTT in the 
transformed wave equation leads to the correct term O(c) for the three-dimen- 
sional problem with shed vorticity. 

4. Two- and three-dimensional cases without shed vorticity 
The absence of shed vorticity simplifies the problem considerably since there 

is then no discontinuity in the velocity potential in the wake. As discussed by 
Lamb (1932) the velocity potential can then be represented by a distribution 
of monopole and dipole sources over the body, whereas if shed vorticity were 
present the pressure field could be represented by such a distribution, but not 
the velocity potential. 

When shed vorticity is absent, the combination of Galilean and Lorentz 
transforms given by (7) reduces the problem to an equivalent zero-flow problem. 
(If shed vorticity is present, this transformation would bring both the body and 
the fluid to rest, but it would not eliminate the required vorticity distribution 
downstream of the body.) Thus, for pIobIems without shed vorticity, only the 
zero-flow case need be considered. For zero flow the parameter E reduces to 
wblc,. 

The velocity potential $ for the zero-flow case can be written as (Lamb 1932, 
pp. 498, 531) 

which is a distribution of monopole and dipole souxces over the body surface 
with the strengths of the sources being a#/an and q5. The normal n points outwards 
from the body and r is the distance between the source and observer normalized 
by a typical body dimension b. For two-dimensional problems 

g(r) = -@p(€?-) (20) 

g(r)  = (47rr)-1e-iCr. (21) 

and for three-dimensional problems 

For the two-dimensional problem, introducing (20) into (19) and expanding 
for small 6 gives 
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On taking the gradient to find the velocity, the terms O(s)  drop out (since the 
function 4 under the integral is a function only of the integration variables) 
with the result that 

This is the counterpart, for problems without shed vorticity, of the Possio 
integral equation. There is no O(s)  term, and the equation is exactly that which 
would be obtained by ignoring the PTT term in the wave equation. 

For three-dimensionaI problems the corresponding results are 

The conclusion is again that ignoring the O(e2) term in the wave equation leads 
to correct O ( E )  results. 

In  conclusion, the O(E)  term for two-dimensional problems without shed 
vorticity and general three-dimensional problems can be obtained by ignoring 
the PTT term in the transformed wave equation. For two-dimensional problems 
with shed vorticity downstream, the Possio integral equation or its equivalent 
must be used to obtain the O(s)  term. 
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